
.... ,+%

:.:>, _ ':_ _b- ,_%b-_'_

ARC 275 {Rev Feb 81 }

' :iip

7%1................

Parallelizing VOLVIS for

Multiprocessor SGI Workstations

Samuel P. Uselton*

Report RNR-93-013, September 1993

Abstract

The direct volume rendering program, VOLVIS, has been modified to take advantage of

Silicon Graphics workstations with multiple processors. The resulting parallel program, called

PVOLVIS, has been run on several different systems. The modification process is described and

the results obtained are reported.

*Numerical Aerodynamic Simulation (NAS) Systems Division, MS T045-1, NASA Ames Research Center, Moffett

Field, CA 94035-1000 (useltonOnas.nasa.gov). The author is an employee of Computer Sciences Corporation. This

work is supported through NASA Contract NAS 2-12961.

Parallelizing VOLVIS for Multiprocessor SGI Workstations

Samuel P. Uselton

Abstract

The direct volume rendering program, VOLVIS, has been modified to take

advantage of Silicon Graphics workstations with multiple processors.

The resulting parallel program, called PVOLVIS, has been run on

several different systems. The modification process is described and

the results obtained are reported.

Introduction- Volvis

This report describes the process and results of parallelizing a

direct volume rendering program called VOLVIS to take advantage of

multiprocessor workstations made by Silicon Graphics (SGI). VOLVIS

was designed and written to be a testbed for experiments in volume

rendering data generated by computational fluid dynamics (CFD)

simulations. While there were already several volume rendering

modules available when this development was begun, none was able to
deal with fluid dynamics data sets. The fluid flow simulations

solve the Navier-Stokes equations for flow around or through a body on

a discretized grid of the volume containing the fluid. These grids

are most often composed of hexahedra! cells whose descriptions are

stored in multidimensional arrays. This strategy allows adjacency

information to remain implicit, saving much storage space. The

geometry of the grid is warped to fit the aerodynamic surfaces and

contains cells of widely varying sizes to permit high spatial

resolution in the areas where it is needed without using a large

number of cells in areas where that resolution is unnecessary. These

grids of hexahedral cells are generally referred to as "curvilinear"

grids.

The variation in grid cell size and shape means that the methods which

have been developed for rapid direct volume rendering of regular grids

can not be used. Volvis uses a ray casting (ray tracing without

reflection or refraction) strategy because the ray-grid cell

intersection could be implemented robustly without special knowledge

of the grid geometry. Vo!vis was initially implemented in C as a

serial application. Sampling issues havebeen deferred, so only one

ray per pixei in the final image is calculated. For ray intersection

purposes, each quadrilateral grid cell face is associated with a

planar equation. These faces are not necessarily planar, although one

of the criteria of a 'Vgood" grid is that the faces are all at least

nearly planar. The approximation used is the same one widely used in

aeronautics applications. The cross product of the cell face

diagonals determines a normal vector, and a displacement is found by

averaging the values for the planes passing through each of the four
vertices.

The main disadvantage of ray casting is the large computation time

required. A trick for finding the initial cell intersected by each

ray and grid coherence are used in the serial version to reduce the
time somewhat. The trick is a variation of the item buffer idea used
in ray tracing to find the first object hit by rays traced from the
eye. The grid geometry is displayed, using the workstation's Z
buffer, as a.collection of quadrilaterals with the i, j and k grid
array indices mapped to red, green and blue color components,
respectively. The Z buffered display is controlled interactively to
select the desired view. Once the view has been selected, the color
at each pixel in the z buffered image can be decoded to determine the
first cell hit by the corresponding ray (or that the ray misses the
grid entirely). The alpha planes are also used, storing an indication
of which of three faces is hit.

From that point on, grid coherence is used to limit the ray
intersection testing that must be done. Grid coherence is the notion
that a ray traversing the grid always moves between adjacent cells.
Knowing that the ray has entered a grid cell through one face (and
assuming planar faces) it must exit through one of the other five
faces of that cell. The parametric distance along the ray for each of
the five planes is easily calculated. The smallest distance greater
than the distance to the entry face must correspond to the exit face.
(This idea is illustrated in two dimensions in Figure i.) The
location of the intersection is calculated. A data value for this
location is found by a bilinear interpolation between the face
vertices. This data value is used to generate color and opacity
values which are composited according to a "glowing smoke" shading
model. The distance along the ray between intersections can be used
to modulate the attenuation, or each face can have equal weight,
resulting in a bias toward smaller cells.

The time required to generate the volume rendered image is completely
dominated by the calculations performed for each ray-grid cell face
intersection. The time per image is linearly proportional to the
product of the number of image pixels actually covered by the grid and
the grid "thickness," that is the number of grid cells penetrated by
each ray. Trivial rejection of pixels that miss the grid is very
efficient, and so adds very little to the time required to produce an
image° For more information on this software, please see reference
[2].

The sample grids used to test this software range from about 40,000
cells to a few hundred thousand cells. The images generated are 501
pixels in both width and height° Using a single 33 megahertz MIPS
R3000 processor, the total time required for intersection, shading and
compositing is roughly one quarter millisecond per intersection.
Producing complete images takes tens of minutes. The code is not too
finely tuned, but tuning is unlikely to produce the orders of
magnitude improvement needed to make this software even moderately
interactive.

Ray tracing may have been the first application to be designated
"embarassingly parallel." it is a frequently used demonstration for
parallel computers. This ray casting program is a simpler version,
and so even more amenable to parallelizing. Since achieving
interactive rendering rates will require orders of magnitude
reductions in the time required, using more processors seems an
obvious method to try. The difficulty is not in finding a way to
parallelize the code but rather choosing from among a multitude of
possibilities.

r ••

O

\

\

\

\

\

\

\

\

/

/

/

/

/

/

/

/

/

/

/
/

/
/

/

/

/

/

/
/

/

/
/

/

/ il
/

/ i2 /

/
/

/

/

/
/

/

/
/

\

\

\

\

\

\

\

\

\

\

\

/ \
/

/ \

/ \

\

Figure 1. A ray from origin O enters a cell at P. To find where the ray

exits the cell, one computes the intersections with lines through the

other 3 sides, il, i2 and i3 (the other five faces in three dimensions).
The desired intersection is the one nearest to O which is still further

than P, in this case, i2.

/

Resources

At %he NAS Systems Division, we have several SGI multiprocessor

workstations. Since the program already ran on a single SGI processor

it seemed reasonable to parallelize the program on the workstation

and test that performance before undertaking a port to a massively

parallel machine. In addition to the processor compatibility,

parallelizing on the workstations with shared memory is easier than

coping with the distributed memory of the massively parallel machines.

The workstations are SGI 4D models, all equipped with VGX graphics

hardware or better. The particular graphics hardware is only relevant

to the performance of the view selection part of the application

because the ray casting is all done in software. The workstations

have from two (model 320) to eight (model 380) 33 megahertz R3000

microprocessors. The processors are all capable of accessing all

memory on themachine directly, that is, these machines have a shared

memory architecture. After the initial tests were complete, SGI made

some time available on a pre-release Onyx system with four i00

Megahertz, R4400 processors and on a pre-release Challenge system with

19 similar processors.

IRIX, SGI's version of Unix, supports shared memory multi-threaded

programming. SGI provides a library of function calls for use in

parallel progr_ng which are slightly higher level than the basic

Unix fork command, and may be used to create lightweight threads which

share an address space. I found use for four of these routines [3].

The first one, m_set_procs, selects the number of threads desired.

The second m fork, spawns one less thread than the number specified by

m set_proc (the parent process is counted in the desired n_er). The

third function is m_kill_procs, which terminates all but one thread.

Finally, I used m_next to assure mutually exclusive access for the

reading and incrementing of a variable used to assign different work
to the otherwise identical threads. Otherwise, the parallel

application is written entirely in C. The SGI GL library is used to

read the image generated by the view selection part of the program and

to write the final volume rendered image.

Changes Required

The m fork routine has as its parameters a function and the parameters
of the function. Each thread is started as an invocation of this

function. The context of the calling routine is shared by the

threads, but all variables declared within this function are local to

the particular invocation, and therefore local to individual threads.

The computation intensive part of VOLVIS was contained in a single

loop which read a single scan line of the z buffered image, computed

pixel values for the corresponding volume rendered scan line and wrote

the scan line to the screen. This loop was isolated and placed into a

separate function, to be called by means of m_fork.

Some rearranging of variable declarations was required to separate

variables into those for which each process needs its own copy and

those which can (or must) be shared. The large data arrays containing

the grid geometry, the solution values and the approximate plane

equations of the cell faces are shared, which saves much m_ory.

Pointers into these arrays are local to the individual threads. The

copy of the z buffered image of the grid is also shared, but an

integer indicating the scan line to operate upon is repeated in each

•..... _ ii_ _

thread. Since the arrays are only read and never written in this part

of the computation, no data dependencies exist.

The graphics (gl) calls for reading and writing the individual scan

lines had to be pushed outside of the procedure to be parallelized, to

avoid the mixing in the graphics pipeline of data from different

threads. As a result, the parallel version reads the whole z-buffered

image at one time and writes the whole volume rendered image at one

time. While seeing the scan lines appear one at a time was excellent

feedback on the progress of the computation, waiting until the

complete image is available fits the parallelization and the reduced

time should reduce the importance of feedback on progress. There was

no file accessing done in this part of the serial code, but if there

had been, it too would have had to be removed from the loop.

I chose to explicitly pass all shared variables rather than trust some

to global storage. However, m fork only permits six variables to

appear in the parameter list of the function it calls. Therefore, I

made logical groupings of variables into structures, so that there are

only six structures to be passed. Defining these structures and

modifying the references to these variables to fit their new

definitions was the most time cons_ng part of the conversion.

Except for these changes, I left the software in the same form as the

serial version. In particular, I did no restructuring to improve

cache use, avoid memory conflicts or attempt load balancing.

For the tests on the Onyx and Challenge systems, the parallel version

of VOLVIS had to be ported to Irix 5.0, since that is the version of

the operating system available on these machines. The port was done

on an Indigo with a beta-test version of Irix 5.0; the port was

relatively straight forward. Most changes were due to stricter ANSI C

and UNIX System V checking. The Challenge systems have no local

graphics, so the final image display was done using dgl (distributed

gl). The use of dgl required no changes to the program.

Results

The paralielized code was run using the blunt fin [i] geometry and the

local Mach number field calculated from the original solution data°

The selected view is shown in Figure 2. Only part of the grid is

visible, but it is the most interesting part of this field, and

contains a wide range of grid cell sizes and shapes. Due to the

relative aspect ratios of the window and the data set, a view showing

the entire data set would contain many more pixels not covered by the

data. The thickness of the data set would not change, so the time

required would be less. The same view was rendered eight times with

the number of processors used varying from one to eight.

Interpolation method, color and opacity transfer functions and

compositing method were all held constant. Eight identical images

were generated. The window is 501 by 501 pixels, for a total of

251,001 pixeis, 220,969 of which are covered by the grid. The grid

dimensions are 32 by 32 by 40. One would expect the average number of

cell walls hit by each ray to be slightly greater than the dimension

of the grid most nearly parallel to the line of sight due to the

oblique angle. The average number of cell walls intersected by each

ray was 33.75. The times reported are the times required to compute

a single image and do not include the the time to select the view, or

to read or write images to the screen.

iili

Figure 2' Local Mach number scalar field, computed from the Blunt
Fin data set. Lambda shock, shown red and opaque, is just ahead of the

leading edge of the fin. This view is from the sy_etry plane side, with

the flow from left to right.

thread. Since the arrays are only read and never written in this part

of the computation, no data dependencies exist.

The graphics (gl) calls for reading and writing the individual scan

lines had to be pushed outside of the procedure to be parallelized, to

avoid the mixing in the graphics pipeline of data from different

threads. As a result, the parallel version reads the whole z-buffered

image at one time and writes the whole volume rendered image at one

time. While seeing the scan lines appear one at a time was excellent

feedback on the progress of the computation, waiting until the

complete image is available fits the parallelization and the reduced

time should reduce the importance of feedback on progress. There was

no file accessing done in this part of the serial code, but if there

had been, it too would have had to be removed from the loop.

I chose to explicitly pass all shared variables rather than trust some

to global storage. However, m fork only permits six variables to

appear in the parameter list of the function it calls. Thereforer I

made logical groupings of variables into structures, so that there are

only six structures to be passed. Defining these structures and

modifying the references to these variables to fit their new

definitions was the most time consuming part of the conversion.

Except for these changes, I left the software in the same form as the

serial version. In particular, I did no restructuring to improve

cache use, avoid memory conflicts or attempt load balancing.

For the tests on the Onyx and Challenge systems, the parallel version

of VOLVIS had to be ported to Irix 5.0, since that is the version of

the operating system available on these machines. The port was done

on an Indigo with a beta-test version of Irix 5.0; the port was

relatively straight forward. Most changes were due to stricter ANSI C

and UNIX System V checking. The Challenge systems have no local

graphics, so the final image display was done using dgl (distributed

gl). The use of dgl required no changes to the program.

Results

The parallelized code was run using the blunt fin [!] geometry and the

local Mach number field calculated from the original solution data°

The selected view is shown in Figure 2. Only part of the grid is

visible, but it is the most interesting part of this field, and

contains a wide range of grid cell sizes and shapes. Due to the

relative aspect ratios of the window and the data setr a view showing

the entire data set would contain many more pixeis not covered by the

data. The thickness of the data set would not change, so the time

required would be less. The same view was rendered eight times with

the number of processors used varying from one to eight.

Interpolation method, color and opacity transfer functions and

compositing method were all held constant. Eight identical images

were generated. The window is 501 by 501 pixels, for a total of

251,001 pixels, 220,969 of which are covered by the grid. The grid

dimensions are 32 by 32 by 40. One would expect the average number of

cell walls hit by each ray to be slightly greater than the dimension

of the grid most nearly parallel to the line of sight due to the

oblique angle. The average number of cell walls intersected by each

ray was 33.75. The times reported are the times required to compute

a single image and do not include the the time to select the view, or

to read or write images to the screen.

Num Procs seconds elapsed cpu seConds speed up efficiency

1 1846.51
2 928.43
3 620.68
4 465.66
5 373.87
6 312.23
7 268.32
8 235.56

1846.35 1 1.00
1856.47 1.99 0.995
1861.48 2.97 0.992
1861.81 3.97 0.993
1868.16 4.94 0. 988
1871.57 5.91 0.986
1875.76 6.88 0. 983
1880.68 7.84 0.980

Table i. SGI 4D/380 with 8 33mhz R3000 processors
2.5 x I0 **-4 seconds per intersection

Table 1 summarizes the data collected, and shows both the speed-up and
efficiency of this parallel implementation. Speed-up is calculated as
the cpu time divided by the single processor elapsed time. The efficiency is
calculated as the speed-up divided by the number of processors used.
The speed-up is graphed versus number of processors in Figure 3.

With an efficiency of 98% or better for all test runsr it is obvious
that this application is highly parallel. Given the performance
achieved, it would be wasted effort to attempt to redistribute the
workload. Any more improvements must come from better serial code
within the compute loop, or more and faster processors. The image
takes only about 4 minutes to compute using eight processors, but this
is still too long for interactivity. It is a great improvement,
however, over the 32 minutes required for the single processor

version. This is only a small data set, but the performance is

dominated as much by pixel count as by data set size. In particular,

speed is linearly proportional to number of pixels covered by the data

set. The speed is also linearly proportional to the viewing thickness

of the data set, which for arbitrary views and data sets of roughly

equal resolution in all three dimensions, is proportional to the cube
root of the data set size.

Results for the tests on the Onyx system are given in Table 2 and

Figure 4. The data rendered was the same and the particular

view is as close as could be matched by slider control. The

differences from the above description are that only 199,836 of the

pixeis were covered, and that the average number of cells hit per ray

was 30.9, due to a difference in the viewing angle.

Num Procs seconds elapsed cpu seconds speed up efficiency

i 737.90 730.87 N/A N/A
2 386.41 751.49 1.91 .955

3 251.98 749.28 2.93 .977

4 190.87 751.01 3.87 .968

Table 2: SGI Onyx with 4 100mhz R4400 processors

1.21 x 10"*-4 seconds per intersection

Even considering the slightly smaller amount of work done for

the image computed on the Onyx, the R4400 processors are more than

twice as fast in real use. A useful image can be produced in the

saossaaoad jo aaqtunN

<3 9 17 _ 0
o ° .

, °.,°, ° ,°_®®,.°,.°o°.°, _ °,°°

t_
t_

tuols;(s 08f/O17- s:_ossaao:td 000_I ZqlAI _3_ lq:_!_ :_ a: n !d

H •

Figure 4: Four 100 Mhz R4400 processors - Onyx System

4

3

2

• o

®
® ®
° ®

• m

, o
® o
o °

i
o

o
o

o
, o

®
®

o

o

• o

o °

• ®

1 2 3 4

Number of Processors

neighborhood of three minutes with only four processors.

Results for the tests on the Challenge system are given in Table 3 and

Figure 5. The data rendered was again the same and the particular

view is as close as could be matched by slider control. In this case

the number of pixels covered by the data set was 219r724 and the

average number of cells per ray was 33.5.

Num Procs seconds elapsed cpu seconds speed up efficiency

1 876.98 867.59 1 NA

2 449.00 886.25 i. 95 .975

3 299.09 882.49 2.93 .977

4 254.69 952.44 3.44 .861

5 180.78 882.69 4.85 .970

6 154.99 907.42 5.66 .943

7 129.88 882.08 6.75 .965

8 117.41 906.91 7.47 .934

9 i01.81 882.69 8.61 .956

i0 92.71 885.57 9.46 .946

Ii 85.63 900.76 i0.24 .931

12 81.41 933.24 10.77 .898

13 71.50 883.31 12.27 .943

14 66.85 884.03 13.12 .937

15 62.59 884.65 14.01 .934

16 59.23 887.07 14.81 .925

17 55.82 884.68 15.71 .924

18 52.69 886.01 16.64 .925

19 51.42 903.35 17.06 .898

Table 3: SGI Challenge with 19 100mhz R4400 processors

1.21 x 10,*-4 seconds per intersection

At 16 processors, the time required became less than one minute. This

threshold has been the initial goal of the paralleiization work. At

this speedr it is reasonable to ask a researcher to try using the

software and give feedback on the results. The efficiency does drop

as the number of processors increasesr but the drop is relatively
slow.

Further Work

More speed can be gained by either greater numbers of processors or

faster processors° Silicon Graphics has announced availability later

this year of the R4400 processor running at 150 megahertz. A fully

configured Onyx can have 24 processors, and the Challenge can have as

many as 36. A fully configured Onyx or Challenge machine could be

expected to yield even greater improvements. However, conventional

wisdom has it that there is a limit to the scalability of shared

memory architectures due to bus saturation and memory contention. I

plan to test this code on an Onyx workstation with the 150 megahertz

R4400 processors at Silicon Graphics as soon as one is available.

In the meantime I also plan to test this program on the distributed

memory parallel machines at NAS beginning with the CM-5. There are

several alternative ways to distribute the computation. I will begin

with one that requires minimal modifications to the workstation

• •i̧

il,

ii

saossaaoad jo aaqtun N

tuols£s o:_ualIeq3 - saossaaoad 001,__I zq_ 00I 6 [:g:aan:_!_t

version. If the performance is below expectations, then additional

work can be done guided by the initial results.

Bibliography

[i] Hung, C.-M. and P.G. Buning, "Simulation of Blunt-Fin Induced

Shock Wave and Turbulent Boundary Layer Separation, " AIAA Paper

84-0457, AIAA Aerospace Sciences Conference, Reno NV, January 1984.

[2] Uselton, Samuel P., "Volume Rendering for Computational Fluid

Dynamics: Initial Results," Technical Report RNR-91-026, Applied

Research Branch, NAS Systems Division, NASA Ames Research Center,

September 199 I.

[3] "m fork", Silicon Graphics IRIX Online Manual, release 4.0.3,

August 1991°

..... i•

